
Web
Exploitation

An Introduction

Disclaimer!
H4ck1ng is 1lleg4l 4nd b4d

Don’t do this stuff without
explicit permission. YOU WILL

GET CAUGHT…

What is Web Exploitation?

● Finding and exploiting vulnerabilities
in web-based application

● Some common web vulnerabilities:
○ SQL Injection
○ Cross Site Scripting
○ Local File Inclusion
○ Command Injection

● Like the web itself, it can feel like a
complicated mess

○ Don’t worry! Everybody starts somewhere

What is the Web?

● World Wide Web (WWW): “an
interconnected system of public
webpages accessible through the
Internet” - mdn web docs

● The web is NOT the internet, it is
just an application built on top of
the internet

● Protocols
○ A standard(“language”) for

communication between computers
● If you want to learn more about the internet

take CS 453!

https://developer.mozilla.org/en-US/docs/Glossary/World_Wide_Web

Client-Server Model

● Client: System/program that
connects to a remote server to
retrieve content

○ For most users: the browser

● Server: A local or remote system
that provides data to a user

○ Can be local or remote

● You can set up a local file server of
your own using:

python3 -m http.server

Hypertext Transfer Protocol (HTTP)

● HTTP: A special protocol designed for
communicating between web client
and servers

○ Follows the client server model we
mentioned earlier

● We send an HTTP request from our
client and receive a response from the
server

● An HTTP request consists of:
○ HTTP Method: GET, POST, etc..
○ URI: what location you’re requesting
○ HTTP version: HTTP 1.1/2
○ HTTP Request headers

■ Other pieces of helpful information

HTTP Headers - How are we requesting our data.

● Headers are sent by both the server and client: to tell the client and the server
information about each other

● Useful Request Headers:
○ Cookie: Cookies are used for tracking and/or authenticating users

■ We can edit and resend cookies to exploit logic bugs in developer code!
○ Host: What server are we requesting a resource on
○ Content-Type: Ensures our content is sent correctly to the server, examples are JSON,

form-data, etc…

● A response header to look for:
○ Server or x-powered-by: Tells us what server is running in the background, useful for

researching vulnerabilities
○ Read more about security with response headers here

https://owasp.org/www-project-secure-headers/#tab=Headers

HTTP methods - What are we requesting?

● Can read more about different headers here

Common HTTP
Request Method

Meaning

OPTIONS Requests the server to tell us the available methods on an endpoint

GET Requests the resource from a filename provided on the host, we receive
the content in the body

HEAD Same as GET, but body is not given

POST Submits an entity to the specified resource, often causing a change in
state or side effects on the server

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Burp Suite and HTTP Proxies

● Burp Suite is a pentesting tool to find,
enumerate, and exploit vulnerable web
applications

● Burp Suite is a proxy that receives all
HTTP/s traffic on local port 8080 and
forwards or intercepts based on
settings on our settings

Burp Suite and HTTP Proxies

● Today we’re primarily going to use three
features of Burp Suite:
○ Target: Let’s us see the sitemap of a website we

visit: this sitemap will grow as we visit more of the
website

○ Proxy: Our proxy will intercept all HTTP requests
it receives where we can the see and modify the
contents while they are being sent

○ Repeater: We can send any HTTP request we
intercept to repeater where we have a view of our
request and response to debug an endpoint

HTTPS - A Side Note

● You may have noticed most
websites you connected to are
using HTTPS

● This is a more secure version of
HTTP encrypted using Transport
Layer Security (TLS)

● This is use to prevent man in the
middle attacks (MITM)

● You won’t need to for the demo, but
if you want Burp Suite to work over
HTTPS you may need to follow this
tutorial

https://portswigger.net/burp/documentation/desktop/external-browser-config/certificate

Let’s intercept a request with Burp Suite.

HTTP Status Codes - How is the Server Responding?

● Typically only seen in requests, for HTTP responses we get a status code:

● Sometimes we can find exploits because improper methods were allowed

Status Code Meaning

200 OK

301 Moved permanently

302 Found

400 Bad/Invalid request

Status Code Meaning

403 Unauthorized

404 Not found

418 I’m a teapot

500 Internal Server Error

https://nvd.nist.gov/vuln/detail/CVE-2021-35243

You can now try Challenges 1 and 2.
https://training.umasscybersec.org

https://training.umasscybersec.org
http://www.youtube.com/watch?v=Pm2BvdiZUXA

HTTP Body - What is the data we are sending?

● With POST requests we can send data
to the server via our HTTP body

○ Below all our headers of a post request we
can add a new line and begin adding data

○ This data can be in multiple forms, we can
specify what form in our request with the

● We can also send data to the server
with GET requests using URL
Parameters

○ https://www.google.com/search?q=hello_w
orld

https://www.google.com/search?q=hello_world
https://www.google.com/search?q=hello_world

What’s wrong with the following code? Discuss it with
the people around you.

import os

def index(user_input):

 #Operating system executes ping -c 3 user_input

 return os.popen(f'ping -c 3 {user_input}').read()

Command Injection

How can we run multiple commands
without a new line? Discuss with the

people around you!

import os

def index(user_input):

 #Operating system executes ping -c 3 user_input

 return os.popen(f'ping -c 3 {user_input}').read()

How can we run multiple commands without a new line?

● echo "hi" ; ls
● echo "hi" | ls
● echo "hi" && ls
● We can find a cheat sheet here

https://hackersonlineclub.com/command-injection-cheatsheet/

You can now attempt Challenge 3.

http://www.youtube.com/watch?v=Pm2BvdiZUXA

What now?

● We will have future talks (this friday and more!),
diving deep into web exploits

● In the meantime, you can:
■ Try the web challenges on our Training

Platform
■ Play PicoCTF
■ Try the PortSwigger labs
■ Play weekly CTFs with the club!

https://training.umasscybersec.org/
https://training.umasscybersec.org/
https://picoctf.org/
https://portswigger.net/web-security/all-labs

Hivestorm 2024

● Cyber defense competition
● Teams of 4 (+2 Alts)
● Virtual competition open to all students with no team limit per school - Great

way to get experience!
● Auditing a simulated corporate network for security issues

● Applications due Sept 27, more info in our Discord.
● Competition held Wednesday, October 16

https://www.hivestorm.org/event.html - Info
https://forms.gle/BViUNekAobFckLNh7 - Signup

https://www.hivestorm.org/event.html
https://forms.gle/BViUNekAobFckLNh7

